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Abstract

One of the ways in which models of structural dynamics can be improved is by taking the various uncertainties that exist

into consideration. This would also increase the reliability of predicted calculation trends in these models. Here, an

original, robust, multi-level dynamic condensation method of stochastic models is proposed. The first-level condensation is

based on a strategy that combines the stochastic finite element method (SFEM) with the robust condensation model.

It is based on a discretization technique of random fields that was established using the Karhunen–Loeve procedure.

In addition, the use of dynamic condensation was aided by random residual static responses. The consequent loads are

representative of local modifications per zone (or component) of the mechanical structure. For the second-level

condensation use of the polynomial chaos (PC) approach allows the presence of uncertainties in the design parameters

to be taken into account and, also, the variability of the response can be analysed in a less costly manner than by using

the Monte Carlo method. Alternatively, a modal perturbation (MP) approach allows rapid synthesis of the random

response. We show how either of these can be used to give an accurate prediction of the condensed model and a

considerable reduction of the calculation costs. Two numerical examples are presented to illustrate the performance of the

proposed method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

During the design and development cycle of dynamically loaded structures or mechanical systems, one
commonly uses models of varying complexity in an iterative manner, to predict the response and guide the
design process. In particular, one can be effective to combine detailed models (such as thin meshing) that are
used for the optimization of components with simplified models that are used for the development of
specifications for these components. When these components are not defined in detail, and when some
uncertainties exist regarding the predicted mechanical characteristics of these components, it is necessary to be
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A area
c deterministic generalized coordinates vector
c o; yð Þ stochastic generalized coordinates vector
C(x1, x2) covariance function
E Young modulus
EA membrane effect
EI flexion rigidity
fe(o) applied harmonics forces vector
fD(o, y) localized stochastic forces vector
FD static loadings basis
H(x, y) random field
i number of internal dof
I quadratic moment
j number of junctions dof
m number of master dof (to be conserved)
M0, K0 mean mass and stiffness matrices
M(y), K(y) stochastic mass and stiffness matrices
R static residual basis
RD random static residual basis
s number of slave dof (to be eliminated)
T0 standard condensation basis
T robust condensation basis of the model
DT correction basis composed by the ran-

dom residuals vectors
U0(o) deterministic response vector
U0(o, y) random response vector
Z0, DZ dynamic stiffness matrix and perturba-

tion matrices

Greek letters

m mean value of the random field
xr yð Þ standard random variables
lr, fr eigenvalues and Eigenvectors of C(x1, x2)
oj yð Þ;Y j yð Þ random eigenmodes
W static sub-basis
H dynamic sub-basis
Cn xrf g

q
r¼1

� �
multidimensional hermite polyno-

mials
qUðoÞ=qxr first-order sensitivity of the response

vector
qoj=qxr; qY j=qxr, first-order sensitivity of the

random eigenmodes
I identity matrix
Ȳ; K̄ deterministic modal and spectral matrix

Superscripts

�1 inverse
T transpose
c index of the condensed model

Operators

�j j absolute value
�k k Euclidean norm
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able to manipulate the calculations so as not to limit the number of explored solutions. The uncertainties are
often linked to the geometric properties, material characteristics and boundary conditions of the model. These
variables are taken into account in models according to two approaches:

The non-parametric approach [1], which introduces the uncertainties directly into the global matrices of the
model or into the reduced matrices of the nominal condensed model [2,3]. The advantage of this approach lies
in its numerical efficiency in terms of correctly predicting the responses and introducing the uncertainties of
the model, without having recourse to the parametric reactualization of the stochastic model. Furthermore,
this approach is placed upstream of an optimization procedure to give predicted stochastic solutions. Its main
drawback is the difficulty in making a direct link with the uncertain physical parameters of the model.

Parametric approaches using the stochastic finite element method (SFEM), which combines classic analysis
by finite elements and statistical analysis. Generally, the stochastic characteristics of the random responses can
be determined from the knowledge of design parameter uncertainties. These uncertain parameters are often
modelled by random variables. Various techniques exist to solve such problems [4–6]. These methods are
generally classified into three categories:
�
 The Monte Carlo (MC) simulation method is often considered to be the reference method [7–9].
The MC simulation provides accurate solutions for the robust condensed model (first-level condensation);
however, the disadvantage of this method is its high numerical cost and the quantities of calculations
required.
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�
 Perturbation methods have been widely used in the field of stochastic mechanics to estimate the response
statistics. These methods are based on a Taylor series expansion [10,11] or a Neumann series expansion
[12–14], both of which analyse responses according to the means of random variables.

�
 Spectral methods that use basic functions of the Hilbert space are associated with random problems.

Generally, these functions can be considered as orthogonal polynomials and, in particular, as Polynomial
Chaos (PC) [15–17]. In this case, random variables can be used; the continuous random fields are
discretized.

These three categories of methods take into account the random variables from which the probability
density is known. Some Gaussian variables are used in most cases [15].

If all these methods allow the calculation of some static solutions, the calculation of dynamic responses
proves to be more delicate, especially for neighbouring resonances. The convergence of these methods is not
assured; the matrix systems become either badly conditioned or even singular, especially for the Taylor series
expansion or the Neumann series expansion methods. The Padé approximations [18], which are part of the
convergence accelerations methods [19], can be used to increase the validity domain of the approximation
based on the Taylor series expansion. The method of projection on the orthogonal polynomials is an
interesting alternative, which makes it possible to avoid these problems. Recently, a modal perturbation (MP)
approach [20] using some exact methods [21–23] was used to allow efficient calculation of the random
eigenmodes and rapid synthesis of the random frequency response, thereby avoiding the bad conditioning of
matrices around resonances. Mean values, standard deviations and extreme statistics can be obtained, which
can give a good estimation of the solutions envelope.

Otherwise, using estimated calculations, finite elements models that are both stochastic and of large size
need to be manipulated. With the aim of reducing the calculation costs and obtaining good predictivity of the
model, an original, robust, multi-level dynamic condensation method of stochastic models is proposed. In the
first-level condensation, the stochastic model is condensed by a robust reduction basis. The obtained
condensed stochastic model will then be exploited in the calculation of the stochastic responses by using
second-level condensation, which is based on two spectral strategies:
�
 the first is based on the MP approach;

�
 the second is based on the PC approach.
Note that this method allows the coupling of the SFEM method and a robust dynamic condensation
method in the presence of perturbations or structural modifications [24], in view of constructing a robust,
reduced random model. This method makes it possible to assign specific uncertainty levels to zones or
components. Furthermore, with respect to parametric modifications, the robust condensation method allows
the treatment of complex structures in a dynamic substructuring context.

The efficiency of the proposed methods will be illustrated through two numerical examples: the first
simulation investigates the random responses variability of a rotor dynamic model with dispersions of three
design parameters, and compares the MC and PC (of order 4) simulation methods for the reference and the
reduction methods, respectively. The second simulation calculates the random response of planar frame
structure with two uncertain parameters, and compares the following simulation methods to the reference
model: MC, PC (of order 4) and perturbation methods.

2. General formulation of the stochastic dynamic model

2.1. Discretization of the random fields

A random field H(x, y) is a collection of random variables that are indexed by a continuous parameter
x 2 O, where O is a bounded subset of Rd , thereby describing the geometry of the system (d is the dimension of
x, that is d ¼ 1 or d41). One procedure of discretization is based on the approximation of H �ð Þ by Ĥ �ð Þ,
which is defined by means of a finite set of variables, fwr; r ¼ 1; . . . ; ng, which are grouped into a random
vector: w : Ĥ x; yð Þ ¼ F x; w yð Þ½ �.
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This method allows the best approximation compared with some error estimators, one of which exploits a
minimal number of random variables. The most efficient methods—called Series Expansion Methods—consist
of coupling a series development of the random field and a spectral analysis, which aims to select the most
important terms [15,25,26]. Therefore, in the case of the homogeneous Gaussian field:

Ĥ x; yð Þ ¼ mþ
Xq

r¼1

Hr xð Þxr yð Þ; (1)

where xr yð Þ; r ¼ 1; . . . ; q
� �

are the independent Gaussian standard normal variables and Hr xð Þ; r ¼ 1; . . . ; q
� �

are the deterministic functions.
C(x1, x2) is the known covariance function that is associated with H �ð Þ, which is assumed to be bound,

symmetrical and positive definite. The spectral decomposition of C x1; x2ð Þ can be written as:

C x1;x2ð Þ ¼
X1
r¼1

lrf r x1ð Þf r x2ð Þ, (2)

where (lr, fr) represent, respectively, the eigenvalues and eigenvectors of C(x1, x2). The decomposition of the
Karhunen–Loeve of H �ð Þ on the basis of the eigenfonctions fr(x) is given by:

H x; yð Þ ¼ mþ
P1

r¼1

ffiffiffiffi
lr

p
f r xð Þxr yð Þ;

the trucated form : Ĥ x; yð Þ ¼ mþ
Pq

r¼1

ffiffiffiffi
lr

p
f r xð Þxr yð Þ:

(3)

2.2. Stochastic finite elements model

Generally, the selected uncertain parameters are linked to the geometric properties (such as A, I), the
material characteristics (E) and, therefore, the products (EA, EI) of the model. The stochastic mass matrix is
obtained using assembly of the elementary matrices. The dispersions on the random variables (mass density,
for example) are introduced so that the mass matrix will be positive definite:

M yð Þ ¼
[

e

Z
Oe

H x; yð ÞNTN dOe

� �
. (4)

By replacing H(x, y) by its expression (see Eq. (1)), this matrix becomes:

M yð Þ �M0 þ
Xq

r¼1

Mrxr yð Þ, (5)

with

M0 ¼
[

e

Z
Oe

mNTN dOe

� �
; Mr ¼

[
e

Z
Oe

Hr xð ÞNTN dOe

� �
; (6)

In the same way, the stochastic stiffness matrix is given by

K yð Þ � K0 þ
Xq

r¼1

Krxr yð Þ, (7)

with

K0 ¼
[

e

Z
Oe

mBT DBdOe

� �
; Kr ¼

[
e

Z
Oe

Hr xð ÞBT DBdOe

� �
, (8)

where D is the matrix of elastic coefficients.
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3. Proposed robust dynamic condensation method

3.1. Stochastic dynamic model per zone or per component

When a level of uncertainty can be attributed to zones or components of a structure, the stochastic
equilibrium equation of the structure is submitted to a harmonic deterministic excitation, which is written in
the following form:

�o2M yð Þ þ joB yð Þ þ K yð Þ
� �

U o; yð Þ ¼ f e oð Þ : j2 ¼ 1, (9)

with M(y), B(y) and K(y) which are the stochastic mass, damping and stiffness matrices, respectively; U(o, y),
which is the stochastic response vector of the model; and fe(o), which is the applied harmonics forces vector.
The stochastic damping B(y) is generally a linear combination of the stochastic mass and stiffness matrices.
The stochastic damping that is used in this study is that of structural damping:

B yð Þ ¼ Z=o
� �

K yð Þ. (10)

Eq. (9) can be rewritten in the form:

�o2M yð Þ þ 1þ jZð ÞK yð Þ
� �

U o; yð Þ ¼ fe oð Þ. (11)

Or as

Z0 oð Þ þ DZ o; yð Þ½ �U o; yð Þ ¼ fe oð Þ, (12)

where Z0 oð Þ ¼ �o2M0 þ 1þ jZð ÞK0

� �
is the mean dynamic stiffness matrix and DZ o; yð Þ ¼

Pq
r¼1

�o2Mr þ 1þ jZð ÞKr

� �
xr is the stochastic dynamic stiffness matrix.

Eq. (12) can be rewritten in the following form:

Z0 oð ÞU o; yð Þ ¼ fD o; yð Þ þ fe oð Þ. (13)

fD o; yð Þ ¼ �DZ o; yð ÞU o; yð Þ is the random forces vector that is associated with unknown modifications of the
initial structure.

To calculate the stochastic response of the structure in presence of uncertain parameters, the proposed
method in this paper exploits a concept which is similar to that introduced by Adhikari and Manohar [27] in
view to construct a robust basis against the uncertainties on the random parameters. Nevertheless, the
proposed method presents some advantages:
�
 The exploitation of a random static residual reduced basis. Consequently, the enriched condensation basis
allows the reduction in a drastic manner of the stochastic finite elements model with a great size.

�
 It is known that in the case of important structural modifications, the perturbation methods or the methods

based on Taylor series expansion must be exploited at high order, which can lead to high calculation cost.
The proposed method which is based on the robust extended basis is able to treat, in addition of the
uncertainties, these important structural modifications without significant additional calculations costs.
This property is particularly interesting in the optimization procedure where the predictivity of the
reduction basis is essential. In fact, such robust basis allows a fast approached and economic reanalysis in
terms of calculations, without updating of the nominal model basis. As same, this robust extended basis
concept can be exploited in the frequency or time domains of the dynamic analysis of finite elements models
with a great size in presence of localized nonlinearities.

The relationship (Eq. (13)) is interpreted as a dynamic equilibrium equation of the initial deterministic model
that is submitted to solicitations fD o; yð Þ. Hence, the force basis that is associated with stochastic modifications
is generalized by the following approximation:

fD o; yð Þ ¼ �DZ o; yð ÞU o; yð Þ � �DZ o; yð ÞU0 oð Þ, (14)

where the deterministic response U0(o) is known.
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Fig. 1. Principle of the robust condensation.
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For each stochastic zone (i), a force sub-basis FDi can be defined from the initial modal properties (Ȳ; K̄:
deterministic eigensolutions) and the stiffness and mass matrices of the stochastic zones Ki(y) and Mi(y):

(15)

The representative force basis of the stochastic modifications group by the concatenation of the sub-basis
FDi(y), followed by singular values decomposition (SVD), leads to linear independence of the columns of this
basis. From this, the random static vectors can be constructed:

RD yð Þ ¼ RFD yð Þ, (16)

with R ¼ K�10 � ȲK̄
�1
Ȳ

T
being the static residual matrix of the nominal model.

For structures with rigid body modes, the matrix K0 is singular and the method outlined in Ref. [28] can be
used.

In practice, the resolution of the problem (13) using the MC simulation approach leads to high numerical
costs. The condensation of this model by a standard reduction method is proving insufficient in terms of
robustness towards parametric perturbations. Therefore, it is proposed that a dynamic condensation method
can be exploited by adapting it to stochastic models (Fig. 1).

The dynamic response of the perturbed system (Eq. (13)) can be expressed by the nominal condensation
basis T0 that is obtained from the mean model enriched with a static residual R, such that:

U o; yð Þ ’ T0c o; yð Þ þ RfD o; yð Þ. (17)
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The reduction basis T, which is common to both the initial and the perturbed systems, is constructed by the
nominal condensation basis T0 and the static displacements RfD, which are associated with a set of static loads
FD that are representative of the potential perturbations DZ o; yð Þ:

(18)

where T0 is the nominal reduction basis, DT is the correction basis due to the stochastic terms DZ and T is the
robust extended basis.

In the practice, the nominal reduction basis T0 can be, for example, a Ritz basis of fixed or free normal
modes of component mode synthesis method [29,30] or simply a truncated modal basis in the direct dynamic
condensation.

The first statistical moments (mean and standard deviation) of the random response are expressed by:

E U o; yð Þð Þ ¼
1

Nsamp

PNsamp

p¼1

U o; yp

� �
;

sU o;yð Þ ¼ var U o; yð Þð Þ½ �
1=2
¼

1

Nsamp

PNsamp

p¼1

U o; yp

� �
� E U o; yð Þð Þ

� �2" #1=2 (19)

The extreme statistics of the random response is introduced by

Umax o; yð Þ ¼ max
p¼1;...;Nsamp

U o; yp

� �
;

Umin o; yð Þ ¼ min
p¼1;...;Nsamp

U o; yp

� �
;

(20)

with E(�) and var(�) which are the expectation and variance operators, respectively; Nsamp, which is the
number of samples y ¼ y1; . . . ; yNsamp

� �
.

3.2. First-level condensation of the stochastic model

The stochastic model (Eq. (13)) condensed by using the nominal reduction basis T0 is given, in the frequency
domain, by the following form:

Zc
0 oð ÞUc o; yð Þ ¼ fc

D o; yð Þ þ fc
e oð Þ, (21)

where Uc o; yð Þ ¼ T0U o; yð Þ is the reduced stochastic vector; Zc
0 oð Þ ¼ TT

0Z0 oð ÞT0 ¼ �o2Mc
0 þ 1þ jZð ÞKc

0

� �
is

the mean condensed dynamic stiffness matrix; fc
D o; yð Þ ¼ TT

0 fD o; yð Þ ¼ �DZc o; yð ÞUc o; yð Þ is the condensed
stochastic forces vector that is associated with unknown reduced modifications DZc o; yð Þ ¼ TT

0DZ o; yð ÞT0 of
the initial structure . When the approximation introduced in Eq. (14) is adopted, the reduced force basis that is
associated with reduced stochastic modifications can be approximated by fc

D o; yð Þ � �DZc o; yð ÞUc oð Þ; where
the reduced deterministic response Uc

0 oð Þ ¼ T0U oð Þ is known; and fc
e oð Þ ¼ TT

0 fe oð Þ and is the condensed
vector of the applied forces.

The transformation matrix that is proposed in Ref. [31] is used to reduce the model in the first level. It
consists of an extension of the passage procedure back in physical coordinates for the current basis of model
condensation. To simplify the presentation and without restricting the generality of the method, the study will
be limited to fixed and free-component mode synthesis methods. For these two configurations, the nominal
Ritz basis T0 can be expressed in the following form:

U ¼
Uj

Ui

( )
¼

Ij 0

W H

� �
Uj

c

� 	
, (22)

where c 2 Rp;1;W 2 Ri;j ;H 2 Ri;p are the generalized coordinates vector and the static and dynamic basis,
respectively, which are a function of the interface configurations type [29,30].

In the case of the Craig and Bampton (CB) method, the static basis W ¼ �K�10ii K0ij represents the constraints
modes and the dynamic basis H corresponds to the p first normal modes at blocked interfaces.
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The physical coordinates transformation consists of eliminating the modal coordinates c in the
transformation (22). The internal coordinates vector Ui is decomposed in a sub-vector with coordinates
that are conserved Um

i and a sub-vector with coordinates that are eliminated Us
i .

Therefore, the second set of the row of the Eq. (22) is given by:

Ui ¼
Um

i

Us
i

( )
¼

Wm Hm

Ws Hs

" #
Uj

c

( )
. (23)

The choice of the internal coordinates Um
i is effected in such a way that the squared matrix Hm 2 Rm;m will be

regular (m ¼ p, number of normal modes) and conducts to the modal coordinates vector c by the relationship:

c ¼ H�1m Um
i �H�1m WmUj. (24)

The transformation (see Eq. (22)) that is expressed in physical coordinates takes the following form:

U ¼

Uj

Um
i

Us
i

8><
>:

9>=
>; ¼

Ij 0

0 Iim

Ws �HsH
�1
m Wm HsH

�1
m

2
64

3
75 Uj

Um
i

( )
¼ T0U

c. (25)

An alternative for making this reduction basis more robust and for making the stochastic dynamic models less
costly is to extend the nominal transformation T0 in the form defined in the previous section (see Eq. (18)):

The correction DT ¼ E RD yð Þ
� �

is the variation due to the stochastic terms DZ (E is the first moment). It
should be noted that when the uncertainty level of the uncertain parameters is weak, RD(y) is calculated for
one sample.

In the case of the CB method, the robust extended basis will be written as

(26)

The condensed stochastic model at the first level allows calculation of the stochastic response of the model
from Eq. (9) by using the enriched CB (CBE) method. In the predicted calculation, the case of weakly damped
linear structure can be considered, which is submitted to the deterministic excitation fe.

The stochastic responses that are obtained by using the first-level condensation will be followed by a second-
level condensation to obtain a rapid synthesis, a considerable reduction of the calculation costs and a good
predictivity of the model.

3.3. Second-level condensation of the stochastic model

Two spectral strategies for second-level condensation can be proposed by exploiting the MP method or the
projection on the PC method.

3.3.1. Second-level condensation by the mp method

The MP method is based on a Taylor series development of the model. The first-order decomposition of the
response vector U(o, y) can be written as

U o; yð Þ ¼ U0 oð Þ þ
Xq

r¼1

qU oð Þ
qxr

xr yð Þ, (27)

with U0(o) being the deterministic response vector of the mean structure and qUðoÞ=qxr being the first-order
sensitivities response vector with respect to the random variables xr.

The generalized displacements (of initial or condensed model) and their sensitivities are calculated for each
excitation frequency by solving the following linear systems:
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Zeroth order: (deterministic case):

�o2M0 þ 1þ jZð ÞK0

� �
U0 oð Þ ¼ fe oð Þ. (28)

The response is U0 oð Þ ¼ Z�10 oð Þfe oð Þ; with Z0 oð Þ ¼ �o2M0 þ 1þ jZð ÞK0

� �
.

First order r ¼ 1; :::; qð Þ:

�o2M0 þ 1þ jZð ÞK0

� � qU oð Þ
qxr

¼ � �o2 qM
qxr

þ 1þ jZð Þ
qK

qxr


 �
U0 oð Þ. (29)

The sensitivity of the response is given by

qU oð Þ
qxr

¼ �Z�10 oð ÞZr oð ÞU0 oð Þ with Zr oð Þ ¼ �o2qM

qxr

þ 1þ jZð Þ
qK

qxr


 �
.

Therefore, the first-order Taylor series development of the random response vector U(o, y) can be obtained.
This development is valid if the following condition is satisfied: Z�10 oð Þ:Zr oð Þ

�� ��� 1.
Of note is the poor numerical conditioning of the matrix Z0 oð Þ ðor Zc

0 oð Þ for the condensed model) around
the resonances of the deterministic model, which affects the quality of the responses envelopes with this
method.

To solve the problem of poor predictability of the stochastic responses around the resonances, the MP
method can be used. First, the generalized eigenproblem K0Ȳj ¼ ō2

j M0Ȳj is solved to identify the eigenmodes,
eigenfrequencies ōj of the mean structure and their associated eigenvectors Ȳj j ¼ 1; . . . ;Nð Þ.

To evaluate the random response U(o, y) of the model, the truncated random eigenmodes N 05Nð Þ can
be used:

U o; yð Þ ¼
XN 0
j¼1

aj o; yð ÞYj yð Þ. (30)

The normal coordinates aj(o, y) are expressed by

aj o; yð Þ ¼
Yj yð Þ
� �T

fe oð Þ

�o2 þ 1þ jZð Þ oj yð Þ
� �2 , (31)

where

oj yð Þ ¼ ōj þ
Xq

r¼1

qoj

qxr

xr yð Þ; Yj yð Þ ¼ Ȳj þ
Xq

r¼1

qYj

qxr

xr yð Þ. (32)

The calculation of first-order sensitivities can be obtained by using previous methods that were proposed by
Adelman and Hoftka [21]; these methods are based on the classic approaches of Fox and Kapoor [23] and of
Nelson [22]. The eigenvalues sensitivity is given by

qlj

qxr

¼ Ȳ
T

j :
qK
qxr

� l̄j
qM
qxr


 �
:Ȳj and qoj=qxr ¼ 1=2ōj

� �
: qlj=qxr

� �
. (33)

The eigenvectors sensitivity is expressed by the following relationship:

qYj

qxr

¼ Vþ cȲj, (34)

where V is the solution of a modified system that is obtained by applying the penalization method at the kth
row and column of K0 � l̄jM0

� �
to obtain Vk ¼ 0:

K0 � l̄jM0

� �
mod

:V ¼ �
qK
qxr

�
qlj

qxr

M0 � l̄j

qM
qxr


 �
:Ȳj. (35)

The value of k is generally chosen in such a way that it equals the index of the element of Ȳj.
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The expression of the unknown scalar c is given by the following relationship:

c ¼ �
1

2
Ȳ

T

j

qM
qxr

Ȳj þ Ȳ
T

j M0V


 �
. (36)

The derivative of the mass and stiffness global matrices are, respectively, expressed by

qM
qxr

¼
[

e

Z
Oe

Xq

r¼1

Hr xð ÞNTNdOe

" #
;

qK
qxr

¼
[

e

Z
Oe

Xq

r¼1

Hr xð ÞBTDBdOe

" #
. (37)

This procedure is applied to the first-level condensed model.

3.3.2. Second-level condensation by projection on the pc method

The expansion of the random response U(y) in the PC method can be written in the following truncated
form:

U yð Þ ¼
XP

n¼0

unCn, (38)

The SFEM method consists of representing each component Un yð Þ (random variable of unknown statistic
law) by a polynomial development in standard normal random variables:

U yð Þ ¼
XP

n¼0

unCn xr yð Þ
� �q

r¼1

� �
, (39)

where xr yð Þ; r ¼ 1; . . . ; q
� �

are the variables that are used to discretize the random field describing the data,

Cn xr yð Þ
� �q

r¼1

� �
; are the multidimensional Hermite polynomials that are defined from a set of q random

variables xr; un and P; which are the coefficients and the development order of the expansion
(P ¼ ðqþ pÞ!=ðq!� p!Þ).

The expansion of the condensed displacement Uc o; yð Þ in the PC method can be written in the following
form:

Uc yð Þ ¼
XP

n¼0

uc
nCn xr yð Þ

� �q

r¼1

� �
. (40)

Similarly, the vector fc
D o; yð Þ can be written as

fc
D o; yð Þ ¼

XP

n¼0

DZcuc
nCn xr yð Þ

� �q

r¼1

� �
. (41)

The insertion of the relationships (40, 41) in Eq. (21) of the condensed model by the transformation T leads to
the following equation:

XP

n¼0

Zc
0u

c
nCn þ

XP

n¼0

Xq

r¼1

�o2Mc
r þ 1þ jZð ÞKc

r

� �
xru

c
nCn ¼ fc

e oð Þ. (42)

The projection of Eq. (42) on the polynomials Cm m ¼ 0; . . . ;Pð Þ leads to the following linear system:

XP

n¼0

Zc
0u

c
n CnCmh i þ

XP

n¼0

Xq

r¼1

�o2Mc
r þ 1þ jZð ÞKc

r

� �
uc

n xrCnCm

 �
¼ fc

e Cmh i. (43)

The relationship (see Eq. (43)) can be written in the following form:

XP

n¼0

Zc
0u

c
n C2

n

 �
þ
XP

n¼0

Xq

r¼1

Zc
ru

c
n xrCnCm

 �
¼ fc

e Cmh i. (44)
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It is important to note that the vectors of C2
n

 �
and xrCnCm

 �
must be calculated only once and kept in

memory for all the calculations using this method.
Eq. (44) is considered for m ¼ 0; . . . ;P, and leads to a system of (P+1) linear matrix equations, the solution

of which corresponds to vectors uc
n.

Dþ Að ÞU ¼ b, (45)

where D is a diagonal matrix by blocks and A is a hollow matrix, such that:

Dii ¼ Zc
0 C2

i

 �
; Aij ¼

Xq

r¼1

Zc
r xrCiCj

 �
(46)

It is necessary to note that, because of the orthogonality of the polynomials, most of the expressions xrCiCj

 �
are null. The vector U is built from the sub-vectors uc

n, and b contains only the sub-vector fc
e, in the case where

fc
e is not correlated to Zc

r .

D0;0 0 � � � 0

0 D1;1
..
.

. .
.

0 DP�1;P�1

2
6666664

3
7777775
þ

A0;0 � � � � � � A0;P�1

..

. ..
.

..

. ..
.

AP�1;0 � � � � � � AP�1;P�1

2
666664

3
777775

0
BBBBBB@

1
CCCCCCA

U0

U1

..

.

UP�1

2
66664

3
77775 ¼

fc
e

0

..

.

0

2
66664

3
77775. (47)

The first statistical moments (mean and standard deviation) can be found by

Uij

 �
¼ u0ij; sUij

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP

n¼1

un
ij

� �2
C2

n

 �vuut . (48)

The projection of the PC method is considered as a model condensation step; a double model condensation
ðT� TPCÞ can therefore be obtained, which allows the calculation of the first moments (mean, standard
deviation and extreme statistics).

To calculate the condensed eigenmodes of the model associated with Eq. (43), the technique described in
Ref. [32] can be exploited to identify the problem of the orthogonality conditions of the random eigenmodes
with regards to the random stiffness and mass matrices.

In the simulation examples, the random eigenmodes that are calculated by the condensed model are
compared to the reference random eigenmodes that result from the complete model by the following criterion:

�f % ¼
f ref

j � f cal
j

��� ���
f ref

j

��� ��� � 100; �U% ¼
Yref

j � Ycal
j

��� ���
Yref

j

��� ��� � 100. (49)

4. Numerical examples

4.1. SFEM of a rotor

For the first simulation, the proposed method will be illustrated in the case of component mode synthesis of
a SFEM. The presented example (Fig. 2) concerns a rotor structure [33], which is modelled as follows:
�
 The axis modelled by a beam in flexion in the two planes (yz) and (yx) and discretized by a two-dimensional
beam element (four dofs per node: Ux;Uz; yz; yx). The model uses 13 finite elements, 14 nodes and 56 dofs
that are distributed in 32 internal dofs of SS1, 20 internal dofs of SS2 and four junction dofs. The
mechanical and geometric characteristics of the axis are given in Table 1.

�
 The disks localized on nodes 3, 6 and 11 and characterized by the following properties (Table 2).

�
 The bearings are modelled by identical stiffness and damping localized on nodes 1 and 14 in the two flexion

planes, according to the translation dofs (Table 3).
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Fig. 2. FEM of the rotor.

Table 1

Mechanical and geometric characteristics of the axis

Mechanical characteristics Geometrical characteristics

E0 ¼ 2.1� 1011N/m2; r0 ¼ 7800 kg/m3; n ¼ 0.3 Axle radius (m) R ¼ 0.05

Length between disks (m) : L1 ¼ 0.2 ; L2 ¼ 0.3; L3 ¼ 0.5; L4 ¼ 0.3

Table 2

Mechanical and geometric characteristics of the disks

Mechanical characteristics Geometrical characteristics

Disks data D1 D2 D3

E0 ¼ 2.1� 1011N/m2; r0 ¼ 7800 kg/m3 Thickness (m) 0.05 0.05 0.06

Inner radius (m) 0.05 0.05 0.05

Outer radius (m) 0.12 0.20 0.20

Table 3

Bearing characteristics

Stiffness (N/m) Damping (N/m/s)

KXX ¼ 5� 107 KZZ ¼ 7� 107 KXZ ¼ KZX ¼ 0 CXX ¼ 5� 102 CZZ ¼ 7� 102 CXZ ¼ CZX ¼ 0
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The rotor contains two stochastic zones: both ends of the beam axis and the two bearings. The Young
modulus of the beam axis and the stiffness of the bearings constitute the uncertain parameters of these zones.

The corresponding dynamic problem can be written in the following form:

�O2M0 þ jO B0 þ BGð Þ þ K0

� �
þ DZ O; yð Þ

� �
U O; yð Þ ¼ fe Oð Þ. (50)

where M0, K0 and B0 are the mean assembly mass matrix, the stiffness matrix and the damping matrix,
respectively. BG is the gyroscopic matrix function of the speed of rotation O (rad/s) of the axis, and DZ O; yð Þ ¼Pq

r¼1Krxr is the stochastic dynamic stiffness matrix.
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The unbalance force, which is localized at node 6, is considered with the amplitude Fb ¼ mb � d � O2 ¼

0:2� 10�3 � O2.
The observation point is localized at node 6, according to the translation dof Ux. The unbalance response is

calculated for the rotation speed O 2 0� 30 000½ � rev=min:When the CBE method is applied, the problem of 56
dofs that was seen when using the SFEM method, is reduced to 14 dofs.

Figs. 3–6 illustrate the evolution of the mean and the standard deviation of the unbalance random response,
as a function of the rotor rotation speed. The dispersions of the parameter E, KXX and KZZ are dE ¼ 5%;
dKXX

¼ dKZZ
¼ 5%.
10-4

10-6

10-8

10-10

10-4

10-6

10-8

10-10

0 0.5 1 1.5 2 2.5 3

x104Speed of the rotor "rpm"

0 0.5 1 1.5 2 2.5 3

x104Speed of the rotor "rpm"

M
ea

n 
va

lu
e 

of
 th

e 
m

as
s 

un
ba

la
nc

e 
re

sp
on

se
 "

m
"

St
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

m
as

s 
un

ba
la

nc
e 

re
sp

on
se

 "
m

"

(a)

(b)

Fig. 3. Mean (a) and standard deviation (b) o the random response. PC order 4 and MC simulation, reference model. Keys: - - - - - -,

Deterministic; ——, MC; —.—, PC order 4.
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In Figs. 3 and 4, the results of the PC method (with order 4) for 5000 samples are compared with those of
the MC method for 1000 samples. The examination of these results shows that the projection on the PC
method allows the prediction of the reference solution obtained by using the MC method.

Fig. 5 shows the prediction quality of the reduced model when CBE is used. Fig. 6 illustrates the close
relationship between the mean and the standard deviation plots of the responses that were obtained by
the projection on the PC (of order 4) for 5000 samples and by the MC method for 5000 samples for the
CBE model.

The numerical performances, as shown by the different CPU times that are summarized in Table 4, show
that the proposed method is based on a double condensation, standard reduction basis, as physical
coordinates are enriched by vectors of the stochastic modification (CBE method) and projection on the PC.

4.2. SFEM of a frame structure

In the SFEM, the proposed method is illustrated in the context of the dynamic substructuring with
two uncertain parameters and two levels of uncertainties. The proposed example concerns a frame structure
(Fig. 7), which is discretized by a two-dimensional beam element (three dofs per node: Ux;Uy; yz). The FEM
contains 162 dofs that are distributed in 57 internal dofs of SS1, 102 internal dofs of SS2 and 3 junction dofs.
The mechanical and geometrical characteristics are given by: b ¼ 5� 10�3m; h ¼ 10�2m; Area ¼ b� h;
E0 ¼ 2.1� 1011N/m2; r0 ¼ 7800 kg/m3; n ¼ 0.3.

The dynamic analysis is realized in the frequency band 0–700Hz, including the first 10 global eigenmodes.
The structure is submitted to a localized excitation force at the node Nf, according to the dof Ux. The
observation point is considered at node N0, according to the direction Ux.

The structure can therefore be thought of as two uncertain parameters per zone (modulus of elasticity at the
foot of the vertical beams and the flexion rigidity throughout the horizontal beam). Note that uncertainties are
introduced in each zone. In addition, the SFEM is applied only in these zones and the rest of the structure is
deterministic. The uncertainties on the flexion rigidity (EI) are introduced by considering a decoupling of the
membrane effects (Km) and the flexion effects (Kf) of the stiffness matrix of a modified zone:
Kzone ¼ EAKzone

m þ EIKzone
f .
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Fig. 5. Mean (a) and standard deviation (b) of the random response. MC simulation, reference and condensed model. Keys: - - - - - -,

Deterministic; ——, REF model; , CBE model.
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The CB method is first applied and the initial model with 162 dofs is reduced to a condensed one with 21
dofs (six dofs for SS1, 12 dofs for SS2 and three junction dofs). The CB method is then enriched by nine
random static residual vectors, resulting in a new robust condensed model with 30 dofs (CBE). This can be
compared to the data in Table 5, in which the first 10 random eigenmodes are calculated by the two
substructuring methods (CB and CBE) and those of the reference model. It is shown that the CBE method
gives good accuracy when predicting the first 10 eigenmodes, in comparison with the standard CB method,
which gives more limited prediction level.
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Fig. 6. Mean (a) and standard deviation (b) of the random response. PC order 4 and MC simulation, condensed model. Keys: - - - - - -,

Deterministic; ——, MC; , PC order 4.

Table 4

CPU time for reference model and condensed model

Dispersion level of uncertain parameters CPU Time (min)

E KXX, KZZ MC ‘‘REF’’ with

1000 samples

MC ‘‘CBE’’ with

5000 samples

PC order 4 ‘‘REF’’

with 5000 samples

PC order 4 ‘‘CBE’’

with 5000 samples

5% 5% 35 22 24 10
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Table 5

Precision of the eigenfrequencies (ef) and the eigenvectors (eu)

Mean eigenfrequency

(Hz)

Random

eigenfrequency

(Hz) (first moment)

CB CB CBE

ef (%) eu (%) ef (%) eu (%) ef (%) eu (%)

162 dofs 162 dofs 21 dofs 30 dofs 30 dofs

Case a: dE ¼ 5%; dEI ¼ 5%

1 11.70 11.67 0.006 0.014 0.004 0.010 0.000 0.003

2 64.65 64.56 0.035 0.075 0.030 0.056 0.000 0.007

3 71.36 71.30 0.010 0.015 0.007 0.012 0.000 0.009

4 113.90 113.75 0.040 0.116 0.031 0.072 0.000 0.026

5 198.15 198.01 0.011 0.089 0.007 0.078 0.000 0.025

6 228.05 227.90 0.104 0.526 0.097 0.453 0.000 0.051

7 321.00 320.39 0.187 0.427 0.142 0.386 0.000 0.069

8 425.20 424.96 0.145 1.026 0.135 0.864 0.001 0.062

9 439.73 439.40 0.073 0.364 0.060 0.291 0.000 0.040

10 634.11 633.04 0.219 1.418 0.124 0.934 0.003 0.272

Case b: dE ¼ 10%; dEI ¼ 10%

1 11.70 11.661 0.007 0.016 0.006 0.012 0.000 0.006

2 64.65 64.482 0.037 0.095 0.032 0.077 0.000 0.008

3 71.36 71.245 0.012 0.026 0.009 0.017 0.000 0.018

4 113.90 113.59 0.042 0.224 0.037 0.139 0.000 0.037

5 198.15 197.87 0.016 0.121 0.010 0.091 0.000 0.028

6 228.05 227.75 0.194 0.656 0.111 0.491 0.000 0.059

7 321.00 319.77 0.429 0.468 0.342 0.426 0.000 0.072

8 425.20 424.71 0.222 1.183 0.185 0.964 0.001 0.066

9 439.73 439.07 0.172 0.734 0.095 0.591 0.000 0.059

10 634.11 631.97 0.432 1.712 0.382 0.951 0.004 0.273
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Fig. 8. Mean of the random response at the position 5NOb. MC simulation, PC order 4, direct perturbation, and modal perturbation,

reference model. Case of the dispersion: (a) dE ¼ 5%; dEI ¼ 5%; (b) dE ¼ 10%; dEI ¼ 10%. Keys:——, MC; , PC order 4;’, direct

pert; J modal pert.
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Figs. 8–11 illustrate the evolution of the mean and the extreme statistics of the random response as a
function of the excitation frequency for the following dispersion levels: dE ¼ 5%; dEI ¼ 5%;
and dE ¼ 10%; dEI ¼ 10%.

In Fig. 8, the results of the different perturbation method of order 1 (direct method, modal method) and the
PC method (of order 4) are compared with those of the reference MC simulation for 1000 samples.
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Fig. 9. Mean (a) and extreme statistics (b) of the random response at the position 5NOb. MC simulation, reference and condensed

models. Case of the dispersion: dE ¼ 10%; dEI ¼ 10%. Keys: ——, REF model; , CBE model; - - - - - -, Diff: REF/CBE.
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Examination of the results shows that the projection on the PC method and the MP method allow prediction
of the reference solution obtained by the MC simulation.

In Fig. 9, the results of MC simulation on the CBE method are compared to those of the reference MC
simulation on the complete model. These results show that the use of the CBE method allows a good dynamic
representation throughout the frequency band 0–700Hz. The quality of the reduced model, CBE, compared
with the reference model is equally highlighted by the differences in response, as illustrated on the same figure.
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Fig. 10. Mean (a) and extreme statistics (b) of the random response at the position 5NOb. PC order 4, Modal Perturbation and MC

simulation, condensed model. Case of the dispersion: dE ¼ 5%; dEI ¼ 5%. Keys: - - - - - -, deterministic; ——, MC; —.—, PC order 4;

—.—, MP.
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Figs. 10 and 11 show that a close relationship is obtained between the calculated random responses by the
PC and MP methods and by the MC simulation for 5000 samples.

Note that, when the dispersion factor increases, the order of PC directly influences the reconstitution quality
of the response and must, therefore, be increased.

In order to highlight the performances of the reduced models in terms of calculation costs, the CPU time
between the condensed and reference models can be compared. Examination of Table 6 shows the good
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Fig. 11. Mean (a) and extreme statistics (b) of the random response at the position 5NOb. PC order 4, Modal perturbation and MC

simulation, condensed model. Case of the dispersion: dE ¼ 10%; dEI ¼ 10%. Same keys of Fig. 10.
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performances of the proposed method, which exploits a double condensation—CBE followed by a projection
on the PC method (CBE+PC) or by the MP method (CBE+MP).

5. Concluding remarks

In this article, a new strategy is proposed in view of optimizing the dynamic behaviour of structures with
local uncertainties. It consists of coupling the SFEM and a robust condensation method. The Ritz
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Table 6

CPU time for reference model and condensed model

Dispersion level of uncertain

parameters

CPU time (min)

E EI MC ‘‘REF’’

with 1000

samples

MC ‘‘CBE’’

with 5000

samples

PC order 4

‘‘CBE’’ with

5000 samples

MP method

‘‘CBE’’ with

5000 samples

Case a 5% 5% 210 201 59 61

Case b 10% 10%
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condensation basis is enriched by additional vectors. These vectors are obtained from the random static
loadings, which are representative of the modification forces. This enriched basis allows the construction of
reduced models, which are robust towards uncertain structural modifications.

The analysis of simulation results showed that this method constitutes an interesting alternative to the
classic reduction methods that are maladjusted to the condensation of the SFEMs.

In addition, comparison of the calculation costs highlights the performances of the double condensation by
the CBE method followed by a projection on exploiting the same enriched basis. Note that the PC and MP
methods give comparable results in the second-level condensation. This methodology can be generalized to
many types of condensation or dynamic substructuring method, as proposed in the literature.

The presented approach reduces the size of the model and increases the predictivity. This is in contrast to
the dynamic behaviour of SFEMs of large size, which often require reanalysis or updating of design
parameters in order to optimize procedures.

Current work is analysing:
�
 the study of the statistic link between the proposed method, which uses a physical approach, in which the
uncertainties of the conception parameters are included directly in the model, and the non-parametric
approach, which includes uncertainties of the finite element matrices without a direct physical link with the
parameters;

�
 a more fine-tuned (precision and calculation time) comparison of the performances of the two

approaches—PC and MP—according to the number of the uncertain design parameters and the
uncertainty level.

One of the perspectives of the current work concerns the integration of the proposed methodology in a
stochastic multi-objective optimization procedure of complex mechanical structures.
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